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Single-item auctions

• A seller with one item for sale

• 𝑛 agents 

• Each agent 𝑖 has a private value 𝑣𝑖 for the item

– This value represents the willingness-to-pay of the agent; that is, 
𝑣𝑖 is the maximum amount of money that agent 𝑖 is willing to pay  
in order to buy the item

• The utility of each agent is quasilinear in money:

– If agent 𝑖 loses the item, then her utility is 0

– If agent 𝑖 wins the item at price 𝑝, then her utility is 𝑣𝑖 − 𝑝



Single-item auctions

• General structure of an auction:

– Input: every agent 𝑖 submits a bid 𝑏𝑖 (agents = bidders)

– Allocation rule: decide the winner

– Payment rule: decide a selling price

• Deciding the winner is easy: the highest bidder

• Deciding the selling price is more complicated

– A selling price of 0, creates a competition among the bidders as to 
who can think of the highest number

• We are interested in payment rules that incentivize the bidders to bid 
their true values

– Truthful auctions that maximize the social welfare



First-price auction

• Allocation rule: the winner is the highest bidder

• Payment rule: the winner pays her bid

• Is this a truthful auction?

𝑣1 = 100

𝑣2 = 50
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Second-price auction

• Allocation rule: the winner is the highest bidder

• Payment rule: the winner pays the second highest bid

• (b) is obvious: 

– the selling price is at most the winner’s bid, and the bid of a 
truthtelling bidder is equal to her true value

Theorem [Vickrey, 1961]
In a second-price auction

(a) it is a dominant strategy for every bidder 𝑖 to bid 𝑏𝑖 = 𝑣𝑖, and

(b) every truthtelling bidder gets non-negative utility



Second-price auction

• For (a), our goal is to show that the utility of bidder 𝑖 is maximized by 
bidding 𝑣𝑖, no matter what 𝑣𝑖 and the bids of the other bidders are 

• Second highest bid: 𝐵 = max
𝑗≠𝑖

𝑏𝑗

• The utility of bidder 𝑖 is either 0 if 𝑏𝑖 < 𝐵, or 𝑣𝑖 − 𝐵 otherwise

Case I: 𝒗𝒊 < 𝑩

• Maximum possible utility = 0

• Achieved by setting 𝑏𝑖 = 𝑣𝑖

Case II: 𝒗𝒊 ≥ 𝑩

• Maximum possible utility = 𝑣𝑖 − 𝐵

• Bidder 𝑖 wins the item by setting 𝑏𝑖 = 𝑣𝑖 ▢



Sponsored search auctions



Sponsored search auctions

• In 2011 Google’s revenue was almost 40.000.000.000 usd

• 96% of this was generated by sponsored search auctions



Sponsored search auctions

• 𝑘 advertising slots

• 𝑛 bidders (advertisers) who aim to occupy a slot

• Slot 𝑗 has a click-through-rate (CTR) 𝑎𝑗

– The CTR of a slot represents the probability that the ad placed at 
this slot will be clicked on

– Assumption: the CTRs are independent of the ads that occupy the 
slots

• The slots are ranked so that 𝑎1 ≥ ⋯ ≥ 𝑎𝑘

• Each bidder 𝑖 has a private value 𝑣𝑖 per click

– Bidder 𝑖 derives utility 𝑎𝑗 ⋅ 𝑣𝑖 from slot 𝑗



Sponsored search auctions: goals

• Truthfulness: It is a dominant strategy for each bidder to bid her true 
value

• Social welfare maximization: σ𝑖 𝑣𝑖 ⋅ 𝑥𝑖

– 𝑥𝑖 is the CTR of the slot that bidder 𝑖 is assigned to, or 0 otherwise

• Poly-time execution: running the auction should be quick



Sponsored search auctions: goals

• Truthfulness: It is a dominant strategy for each bidder to bid her true 
value

• Social welfare maximization: σ𝑖 𝑣𝑖 ⋅ 𝑥𝑖

– 𝑥𝑖 is the CTR of the slot that bidder 𝑖 is assigned to, or 0 otherwise

• Poly-time execution: running the auction should be quick

• If the bidders are truthful, then maximizing the social welfare is easy: 
sort the bidders in decreasing order of their bids

• So, the problem is to incentivize them to be truthful, again

• Can we extend the ideas we exploited for single-item auctions?



Generalized second-price auction

• Allocation rule: sort the bidders in decreasing order of their bids and 
rename them so that 𝑏1 ≥ ⋯ ≥ 𝑏𝑛

• Payment rule: every bidder 𝑖 ≤ 𝑘 (who is assigned at slot 𝑖) pays the 
next highest bid 𝑏𝑖+1 per click, and every bidder 𝑖 > 𝑘 pays 0

𝑣1 = 100

𝑣2 = 50

𝑎1 = 1

𝑎2 =
3

5



Generalized second-price auction
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Generalized second-price auction

• Allocation rule: sort the bidders in decreasing order of their bids and 
rename them so that 𝑏1 ≥ ⋯ ≥ 𝑏𝑛

• Payment rule: every bidder 𝑖 ≤ 𝑘 (who is assigned at slot 𝑖) pays the 
next highest bid 𝑏𝑖+1 per click, and every bidder 𝑖 > 𝑘 pays 0

𝑣1 = 100

𝑣2 = 50

𝑎1 = 1

𝑎2 =
3

5

𝑏1 = 49

𝑏2 = 50

𝑢2 = 1 ⋅ 50 − 49
= 1

𝑢1 =
3

5
⋅ 100 = 60



Myerson’s Lemma

• That didn’t work for sponsored search auctions, so what now?

• Let’s try to see how the optimal truthful auction should look like, for 
any single parameter environment

• Input by bidders:  𝒃 = (𝑏1, … , 𝑏𝑛)

• Allocation rule: 𝒙(𝒃) = (𝑥1(𝒃), … , 𝑥𝑛(𝒃))

• Payment rule:  𝒑(𝒃) = (𝑝1(𝒃), … , 𝑝𝑛(𝒃))

• The utility of bidder 𝑖 is  𝑢𝑖 𝒃 = 𝑣𝑖 ⋅ 𝑥𝑖(𝒃) − 𝑝𝑖(𝒃)

• Focus on payment rules such that  𝑝𝑖 𝒃 ∈ 0, 𝑏𝑖 ⋅ 𝑥𝑖 𝒃

– 𝑝𝑖 𝒃 ≥ 0 ensures that the seller does not pay the bidders

– 𝑝𝑖 𝒃 ≤ 𝑏𝑖 ⋅ 𝑥𝑖 𝒃 ensures non-negative utility for truthful bidders



Myerson’s Lemma

• An allocation rule 𝒙 is implementable if there exists a payment rule 𝒑
such that (𝒙, 𝒑) is a truthful auction

• An allocation rule 𝒙 is monotone if for every bidder 𝑖 and bid vector 
𝒃−𝑖, the allocation 𝑥𝑖(𝑧, 𝒃−𝑖) is non-decreasing in the bid 𝑧 of bidder 𝑖

Lemma [Myerson, 1981]

(a) An allocation rule 𝒙 is implementable if and only if it is 
monotone

(b) For every allocation rule 𝒙, there exists a unique payment rule 
𝒑 such that (𝒙, 𝒑) is a truthful auction



Proof of Myerson’s Lemma

• Fix a bidder 𝑖, and the bids 𝒃−𝑖 of the other bidders

• Given that these quantities are now fixed, we simplify our notation:

– 𝑥(𝑧) = 𝑥𝑖(𝑧, 𝒃−𝑖)

– 𝑝 𝑧 = 𝑝𝑖 𝑧, 𝒃−𝑖

– 𝑢 𝑧 = 𝑢𝑖 𝑧, 𝒃−𝑖

• The idea:

– assuming (𝒙, 𝒑) is a truthful auction, the bidder has no incentive to 
unilaterally deviate to any other bid

– This will give us a relation between 𝒙 and 𝒑, which we can use to 
derive an explicit formula for 𝒑 as a function of 𝒙



Proof of Myerson’s Lemma

• Consider two bids 0 ≤ 𝑧 < 𝑦 and assume 𝒙 is implementable by 𝒑

• True value = 𝑧, deviating bid = 𝑦: 

• True value = 𝑦, deviating bid = 𝑧:

𝑢 𝑧 ≥ 𝑢 𝑦 ⟺ 𝑧 ⋅ 𝑥 𝑧 − 𝑝 𝑧 ≥ 𝑧 ⋅ 𝑥 𝑦 − 𝑝 𝑦

⟺ 𝑝 𝑦 − 𝑝 𝑧 ≥ 𝑧 ⋅ 𝑥 𝑦 − 𝑥 𝑧

𝑢 𝑦 ≥ 𝑢 𝑧 ⟺ 𝑦 ⋅ 𝑥 𝑦 − 𝑝 𝑦 ≥ 𝑦 ⋅ 𝑥 𝑧 − 𝑝 𝑧

⟺ 𝑝 𝑦 − 𝑝 𝑧 ≤ 𝑦 ⋅ 𝑥 𝑦 − 𝑥 𝑧



Proof of Myerson’s Lemma

• Combining these two, we get:

• This also implies that

• Since 0 ≤ 𝑧 < 𝑦, this is possible if and only if 𝒙 is monotone so that 
𝑦 − 𝑧 > 0 and 𝑥 𝑦 − 𝑥 𝑧 > 0

⇨ (a) is now proved

𝑧 ⋅ 𝑥 𝑦 − 𝑥 𝑧 ≤ 𝑝 𝑦 − 𝑝 𝑧 ≤ 𝑦 ⋅ 𝑥 𝑦 − 𝑥 𝑧

𝑦 − 𝑧 ⋅ 𝑥 𝑦 − 𝑥 𝑧 ≥ 0



Proof of Myerson’s Lemma

• We can now assume that 𝒙 is monotone

• Assume 𝒙 is piecewise constant, like in sponsored search auctions

• The break points are defined by the highest bids of the other bidders

𝑥(𝑧)

0 𝑧



Proof of Myerson’s Lemma
𝑥(𝑧)

0 𝑧



Proof of Myerson’s Lemma

• By fixing 𝑧 and taking the limit as 𝑦 tends to 𝑧, we have that

𝑧 ⋅ 𝑥 𝑦 − 𝑥 𝑧 ≤ 𝑝 𝑦 − 𝑝 𝑧 ≤ 𝑦 ⋅ 𝑥 𝑦 − 𝑥 𝑧

jump of 𝑝 at 𝑧 = 𝑧 ⋅ (jump of 𝑥 at 𝑧)



Proof of Myerson’s Lemma

• By fixing 𝑧 and taking the limit as 𝑦 tends to 𝑧, we have that

• Therefore, we can define the payment of the bidder as

where 𝑦 enumerates all break points of 𝑥 in [0, 𝑏]

𝑧 ⋅ 𝑥 𝑦 − 𝑥 𝑧 ≤ 𝑝 𝑦 − 𝑝 𝑧 ≤ 𝑦 ⋅ 𝑥 𝑦 − 𝑥 𝑧

jump of 𝑝 at 𝑧 = 𝑧 ⋅ (jump of 𝑥 at 𝑧)

𝑝 𝑏 = σ𝑦∈[0,𝑏] 𝑦 ⋅ (jump of 𝑥 at 𝑦)



Proof of Myerson’s Lemma

• Example:

𝑥(𝑧)

0 𝑧𝑏𝑦1 𝑦2

𝑝 𝑏 = σ𝑦∈[0,𝑏] 𝑦 ⋅ (jump of 𝑥 at 𝑦) = 𝑦1 ⋅ 𝑥1 + 𝑦2 ⋅ (𝑥2 − 𝑥1)

𝑥1

𝑥2



Proof of Myerson’s Lemma

• Example:

𝑥(𝑧)

0 𝑧𝑏𝑦1 𝑦2

𝑝 𝑏 = σ𝑦∈[0,𝑏] 𝑦 ⋅ (jump of 𝑥 at 𝑦) = 𝑦1 ⋅ 𝑥1 + 𝑦2 ⋅ (𝑥2 − 𝑥1)

𝑥1

𝑥2



Proof of Myerson’s Lemma

• Example:

𝑥(𝑧)

0 𝑧𝑏𝑦1 𝑦2

𝑝 𝑏 = σ𝑦∈[0,𝑏] 𝑦 ⋅ (jump of 𝑥 at 𝑦) = 𝑦1 ⋅ 𝑥1 + 𝑦2 ⋅ (𝑥2 − 𝑥1)

𝑥1

𝑥2



Proof of Myerson’s Lemma
𝑥(𝑧)

0 𝑧𝑣 𝑏

𝑥(𝑧)

0 𝑧𝑣𝑏

𝑥(𝑧)

0 𝑧𝑏 = 𝑣



Proof of Myerson’s Lemma
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Proof of Myerson’s Lemma
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Sponsored search auctions

• 𝑦 enumerates the break points: the bids that are smaller than 𝑏

– In other words, 𝑦 enumerates the slots from worst to best

• jump of 𝑥 at 𝑦: the difference in CTR between two consecutive slots

• The total payment of the 𝑖-th highest bidder is:

𝑝 𝑏 = σ𝑦∈[0,𝑏] 𝑦 ⋅ (jump of 𝑥 at 𝑦)

𝑝𝑖 𝑏𝑖 , 𝒃−𝑖 =

𝑗=𝑖

𝑘

𝑏𝑗+1(𝑎𝑗 − 𝑎𝑗+1)



Summary

• Auctions: allocation rule + payment rule

• An allocation rule is implementable is there exists a payment rule, 
so that together they define a truthful auction

• An allocation rule is monotone, if larger bids give more stuff

• Single-item auctions: first-price is not truthful, second-price is 
truthful and maximizes the social welfare (sells to the bidder with 
the highest value)

• Sponsored search auctions: generalized second-price auction is 
not truthful

• Myerson’s Lemma: a characterization of truthful mechanisms in 
single-parameter environments 

• Using Myerson’s Lemma we can design a truthful sponsored search 
auction


